Reaching the ideal weight?

Calibration of a Bayesian network weight-of-evidence model for supporting animal alternatives in ecotoxicity testing

Background

- A Bayesian network (BN) has been developed for predicting acute fish toxicity (AFT) from fish embryo toxicity (FET) in combination with other lines of evidence (LoE) (Moe et al. 2020)
- Data shortage is a challenge for model evaluation
- Cross-validation allows for efficient use of data for training and testing **independently**

BN model construction

- Acute toxicity data from 237 substances: juvenile fish (AFT), fish embryo (FET), algae, daphnids, gill cytotoxicity and/or QSAR (Fig. 1)
- Prior probabilitiv distributions are estimated by hierarchical Bayesian modelling (ANOVA) (Fig. 2)
- LoE weights are estimated by multiple linear regression of expected values from each LoE (Eq.1): AFT ~ 0.326 * FET + 0.308 * Algae & daphnids
 - + 0.216 * Gill cytotoxicity + 0.149 * QSAR

Cross-validation

- The data are divided into k = 10 subsamples. For each k,
 - 9 subsamples used for training (Eq. 1)
 - the 10th subsample is used for testing
- The resulting 10 sets of coefficients are averaged to obtain the calibrated LoE weights (Eq. 1)

Figure 2. Calculation of posterior probability: example from one Line of Evidence

Jannicke Moe (NIVA)¹, Anders L. Madsen (HUGIN), Raoul Wolf (NGI), Scott E. Belanger (retired from P&G), Thomas Braunbeck (Univ. Heidelberg), Kristin A. Connors (P&G), Michelle Embry (HESI), Kristin Schirmer (EAWAG), Stefan Scholz (UFZ), Adam D. Lillicrap (NIVA)

1) Norwegian Institute for Water Research (NIVA), Oslo, Norway

Figure 1. BN model: main modules and functionality

the influence of each LoE

BN model evaluation

- Model accuracy is evaluated by the most probable AFT interval
- The BN is evaluated for 4x4 criteria (data availability and precision of prediction)
- The calibrated BN typically predicts a binary response (e.g. LC50 < 1 mg/L; Fig. 3)correctly for 75-80% of the cases

• Sensitivity scores (Fig. 1) reflect the weights of LoEs, as well as uncertainties (conditional probabilities) within each LoE

Ongoing work and further improvments

- Expanded dataset for training and testing
- Refined definition of substance groups
- Update of the online model user interface & user guidance
- Include additional data to define the applicability domain
 - Touch-evoke response of fish embryos
 - Metabolic activity of embryo and juvenile fish

Acknowledgements

The project **SWiFT** (Strengthening Weight of evidence for FET data to replace acute Fish Toxicity) is funded by The European Chemical Industry Council (CEFIC LRI project ECO51)

Reference

Moe et al. 2020. Development of a hybrid Bayesian network model for predicting acute fish toxicity using multiple lines of evidence. Env. Mod. Soft.: 104655. https://doi.org/10.1016/j.envsoft.2020.104655

imo@niva.nc